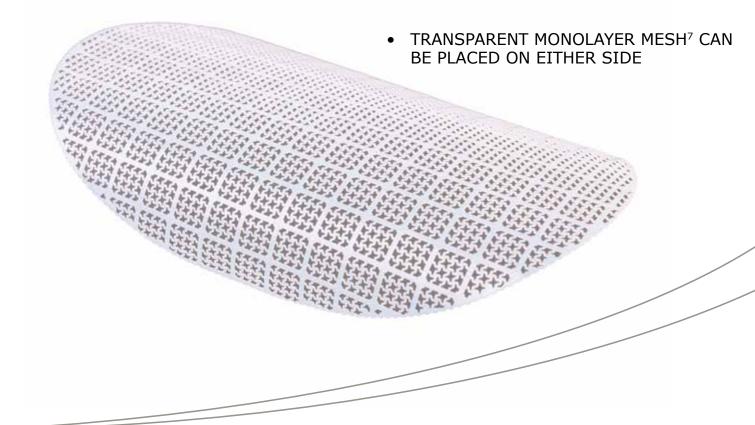
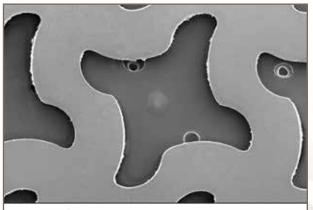
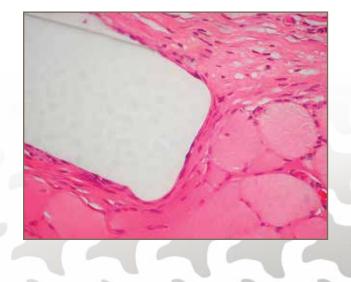

MOTIFMESH


High Performance Monolayer PTFE Mesh

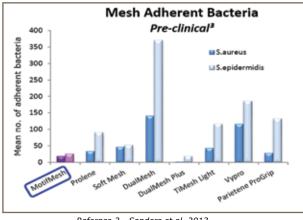

Tailored for Intraperitoneal (IPOM) Repair

• ULTRA THIN FOR LAPAROSCOPIC DELIVERY 150 micron/ 0.006"


 NO ORIENTATION REQUIRED AS EQUAL STRENGTH IN EACH DIRECTION

- SMOOTH BIOCOMPATIBLE PTFE MATERIAL
- MACROPOROUS FOR OPTIMAL TISSUE INTEGRATION
- INHERENT ANTI-ADHESIVE SURFACE PROPERTIES

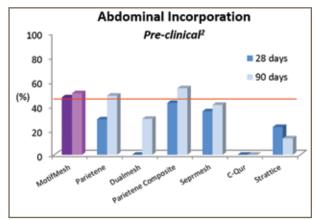
MotifMESH Pore Size: 1.9 - 2.9 mm



Proven Performance Across Key Criteria

Performance Criteria	v. Flatsheet PTFE Mesh	v. Composite Mesh	v. Biologic Mesh
1: Mesh Infection Resistance	Higher	Equivalent - Lower	Equivalent - Lower
2: Tissue Incorporation	Higher	Equivalent - Higher	Higher
3: Visceral Adhesion	Lower	Equivalent - Lower	Higher
4: Shrinkage	Lower	Equivalent	Lower
5: Relative Pricepoint	ca. 60%	ca. 50% - 90%	ca. 10% - 30%

Product comparisons carried out in pre-clinical and clinical trials - Ref: 1,2,3,5,6


1. MESH INFECTION RESISTANCE

Refernce 3 - Sanders et al, 2013

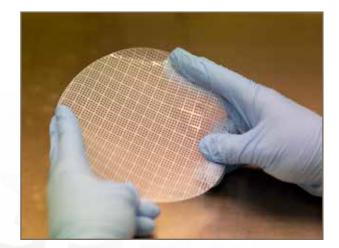
 MotifMESH condenced PTFE material structure inhibits bacterial formation better than competing products.^{1, 2, 3}

2. TISSUE INCORPORATION


Reference 2 - Deerenberg et al, 2012

- Study shows MotifMESH has faster Abdominal incorporation after 28 days than any other synthetic or biologic mesh.²
- Macroporous design promotes rapid healing and dense collagen formation.^{5, 6}

3. VISCERAL ADHESION


- Ultra smooth, non porous PTFE material provides inherent anti-adhesive qualities.⁶
- Image below showing good peritoneal covering with vascularisation of new peritoneum homogeneous covering over undulating mesh with no adhesions to the mesh - one to a tack.

In-vivo study - MotifMESH 1yr post implantation

4. SHRINKAGE

- Shrinkage 10-15%, in line with most composite and non-composite mesh after 90 days, versus 23% shrinkage for biologic mesh.²
- Facilitates repair of large hernias.

References

- 1. "Macroporosity and hypdrophobicity of surgical meshes reduce in vivo staphylococcus aureus infection and anchorage"Voskerician et al. (Presented at 4th International Hernia Congress, Sept. 2009)
- 2. "Experimental Study on Synthetic and Biological Mesh Implantation in a Contaminated Environment", Deerenberg et al. (BJS Journal Vol. 99, Issue 12, Dec. 2012)
- 3. "An in vitro study assessing the effect of mesh morphology and suture fixation on bacterial adherence", D Sanders et al. (Springer Link, Hernia, Vol. 17, Issue 6, 779-789, Dec. 2013)
- 4. "Foreign body reaction to meshes used for the repair of abdominal wall hernias," Klinge, U. et al, Eur J Surg (1999); 165: 665-673
- 5. "Macroporous condensed poly(tetrafluoroethylene) I. In vivo inflammatory response and healing characteristics", Voskerician, G et al, J Bio Mat res (2006); 76A: 232-242.
- 6. "Macroporous condensed poly(tetrafluoroethylene). II. In vivo effect on adhesion formation and tissue integration", Voskerician, G et al, J Biomed Mater Res A. 2007 Aug; 82(2):426-35.)
- 7. In house benchmark study data on file.

ARAN BIOMEDICAL TEORANTA

COILLEACH, SPIDDAL, CO. GALWAY, H91 C2NF, IRELAND +353 (0) 91-896900 | WWW.ARANBIOMEDICAL.COM

ML028-003