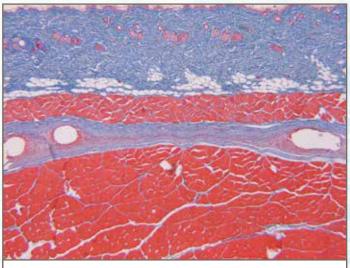

VITAMESH^M BLUE

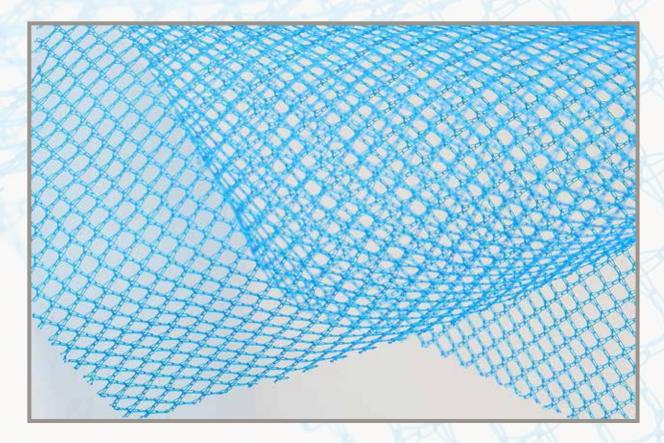
Lightweight Macroporous Polypropylene Mesh



VitaMESHTM BLUE Lightweight Surgical Mesh

VitaMESH[™] Blue Lighweight Macroporous PP Surgical Mesh is an implant suitable for different types of fascial defects. VitaMESH BLUE provides the favourable ingrowth and healed strength characteristics of a large pore monofilamentpolypropylenemesh with optimised handling and biocompatibility attributes in one high performance implant of condensed polypropylene (cPP).

5.5mm² Pore Size


Macroporous Open Pore Structure

Technical Characteristics¹: VitaMESH BLUE

Characteristic	VitaMESH [™] BLUE
Areal Density	28.3 g/m ²
Pore Size	$5.5 \pm 1.5 \text{ mm}^2$
Thickness	0.0075" ± 0.0015"
Burst Strength	208.9 N
Tensile Strength (Normal)	27 N
Flexural Rigidity/ Stiffness	2.5 N
Monofilament Diameter	0.005″

Tailored for Minimally Invasive Hernia Repair

- Strong and durable cPP material provides higher levels of strength compared to other lightweight meshes.^{1,4}
 - Reduced surface area, void area and a large pore structure for improved healing and biocompatibility with less fibrous tissue encapsulation.^{2,4}
 - A 125 micron monofilament fibre is used to produce a porous mesh with a weight of 28.3 g/m².¹

- Up to 80% reduction in thickness over predicate devices and a low coefficient of friction improve ease of use and trocar deployment.
- Transparent open pore structure does not inhibit view, and blue fibre contrasts effectively with the underlying tissue structures.¹
- Macroporous open pore structure promotes rapid healing and dense collagen formation.¹ Pore size is compatible with most surgical fixation products.

References

- 1. Bench testing at Aran Biomedical data on file.
- 2. Klinge, U. et al., "Foreign body reaction to meshes used for the repair of abdominal wall hernias," Eur J Surg (1999); 165: 665-673.
- 3. Deeken et al., "Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair", Journal of the Mechanical Behavior of Biomedical Materials (2017), 74: 411-427.
- 4. Est et al., "Multi-directional mechanical analysis of synthetic scaffolds for hernia repair", Journal of the Mechanical Behavior of Biomedical Materials (2017), 71: 43-53.

COILLEACH, SPIDDAL, CO. GALWAY, H91 C2NF, IRELAND +353 (0) 91-896900 | WWW.ARANBIOMEDICAL.COM