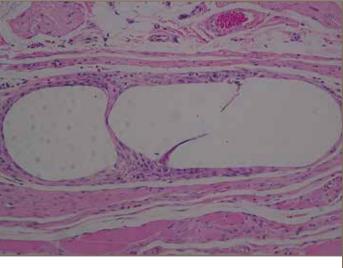

VITAMESH

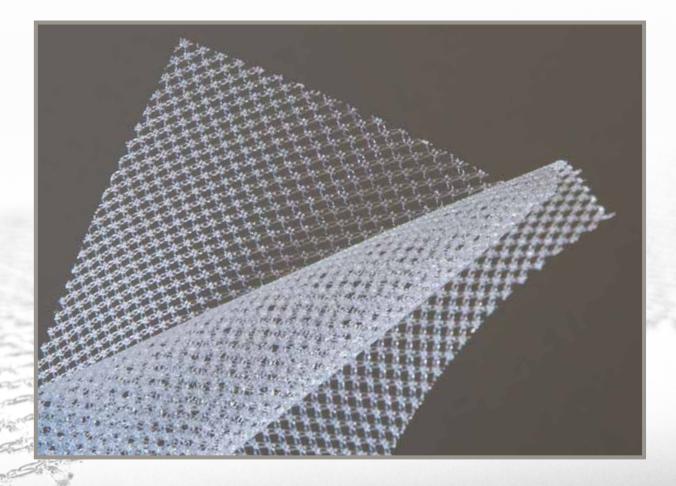
Midweight Macroporous Polypropylene Mesh



Tailored for Minimally Invasive Hernia Repair

VitaMESH[™] Macroporous PP Surgical Mesh is an implant suitable for different types of fascial defects. VitaMESH provides the favourable ingrowth and healed strength characteristics of a large pore monofilament polypropylene mesh with optimised handling and biocompatibility attributes in one high performance implant of condensed polypropylene (cPP).

2.4 mm² Pore Size


Macroporous Open Pore Structure

Technical Characteristics¹: VitaMESH[™]

Characteristic	VitaMESH [™]
Areal Density	52 ± 8 g/m ²
Pore Size	2.4 ± 0.4 mm ²
Thickness	0.010" ± 0.002"
Burst Strength	344.3 N
Tensile Strength (Normal)	28.8 N
Flexural Rigidity/ Stiffness	5.2 N
Monofilament Diameter	0.006″

Performance Characteristics¹: VitaMESH

- Strong and durable cPP material maintains consistent levels of strength, while avoiding the problems associated with composite meshes ^{1, 3, 4}
 - Thin wall structure with less material for reduced scar tissue build up and minimized patient discomfort ⁵
 - Surface area and void area reduction for improved healing and biocompatibility²

Transparent open pore structure facilitating fast incorporation and visualisation of underlying tissue structures ¹

 Up to 80% reduction in thickness and a low coefficient of friction over predicate devices, improving ease of use and trocar deployment ⁴

References

- 1. Bench testing at Aran Biomedical Limited data on file.
- 2. Klinge, U. et al., "Foreign body reaction to meshes used for the repair of abdominal wall hernias," Eur J Surg (1999); 165: 665-673.
- Schedbach, H. et al., "In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties, during endoscopic total extraperitoneal (TEP) patchplasty," Surg Endosc (2004) 18: 211 – 220.
- 4. Deeken et al., "Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair", Journal of the Mechanical Behavior of Biomedical Materials (2017), 74: 411-427.
- 5. Est et al., "Multi-directional mechanical analysis of synthetic scaffolds for hernia repair", Journal of the Mechanical Behavior of Biomedical Materials (2017), 71: 43-53.

ARAN BIOMEDICAL TEORANTA COILLEACH, SPIDDAL, CO. GALWAY, H91 C2NF, IRELAND +353 (0) 91-896900 | WWW.ARANBIOMEDICAL.COM